IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010 1

A Programmable Display Layer for Virtual
Reality System Architectures

Ferdi Alexander Smit, Robert van Liere, and Bernd Froehlich

Abstract—Display systems typically operate at a minimum rate of 60 Hz. However, existing VR-architectures generally produce
application updates at a lower rate. Consequently, the display is not updated by the application every display frame. This causes a
number of undesirable perceptual artifacts. We describe an architecture that provides a programmable display layer (PDL) in order to
generate updated display frames. This replaces the default display behavior of repeating application frames until an update is
available. We will show three benefits of the architecture typical to VR. First, smooth motion is provided by generating intermediate
display frames by per-pixel depth-image warping using 3D motion fields. Smooth motion eliminates various perceptual artifacts due to
judder. Second, we implement fine-grained latency reduction at the display frame level using a synchronized prediction of simulation
objects and the viewpoint. This improves the average quality and consistency of latency reduction. Third, a crosstalk reduction
algorithm for consecutive display frames is implemented, which improves the quality of stereoscopic images. To evaluate the
architecture, we compare image quality and latency to that of a classic level-of-detail approach.

Index Terms—Display algorithms, virtual reality, image-based rendering.

1 INTRODUCTION

ODERN VR-applications typically consist of a head-

tracked user, a simulation process, (photo)realistic
rendering, and a stereoscopic display system. To generate
images on the display, the application first calculates one
time step in the simulation. A scene graph is constructed
from the simulation data, which is then rendered by the
graphics hardware into frame buffers for the left and right
eyes. Head tracking information is used to determine a
correct viewpoint for the rendered scene graph. Finally, the
left and right buffers are scanned out to the stereoscopic
display by a buffer swap. We call such an update of the
display by the application an application frame. This is
shown in Fig. 1a, corresponding to the VR-latency model
proposed by Mine [1].

Display systems typically operate at a minimum of 60 Hz
for monoscopic viewing, or 120 Hz in the case of
stereoscopic viewing (60 Hz per eye). This implies that
consecutive images on the display are only visible for
approximately 16.7 ms. We call these consecutive images on
the display display frames. The process of running a
simulation and rendering typically takes much longer,
either due to a time-consuming simulation process or due to
the rendering of complex geometry and lighting. Conse-
quently, the display is not updated by the application every

e F.A. Smit and R. van Liere are with Centrum Wiskunde and Informatica
(CWI), PO Box 94079, NL-1090 GB Amsterdam, The Netherlands.
E-mail: {ferdi.smit, robert.van.liere/@cwi.nl.

o B. Froehlich is with Bauhaus-Universitit Weimar, Bauhausstr. 11,
Fakultit Medien, 99423 Weimar, Germany.

E-mail: bernd.froehlich@medien.uni-weimar.de.

Manuscript received 15 Feb. 2009; revised 29 Apr. 2009; accepted 7 May
2009; published online 29 June 2009.

Recommended for acceptance by E. Kruijff.

For information on obtaining reprints of this article, please send e-mail to:
tucg@computer.org, and reference IEEECS Log Number
TVCGSI-2009-02-0034.

Digital Object Identifier no. 10.1109/TVCG.2009.75.

1077-2626/10/$26.00 © 2010 IEEE

display frame. The default behavior of a display system is to
repeat a display frame when no updates are provided by
the application. We call this repetition repeated application
frames, since an application frame is repeated for several
display frames until an update is provided by the
application. This is shown in Fig. 1b. When a 60 Hz frame
rate cannot be realized otherwise, classic VR-architectures
often use level-of-detail approaches to reduce the number of
polygons rendered by such an amount that new application
frames can be generated at 60 Hz. However, this comes at
the cost of reduced image quality.

Current graphics APIs and display hardware are highly
rigid with respect to display updates. The default behavior
of repeating the same display frame over and over in the
absence of application updates can virtually never be
changed. The only real control the application has over
the display is in filling a frame buffer and requesting a
buffer swap. The frame buffer is then read from memory
and scanned out to the display whenever the hardware sees
fit, usually at the next display refresh signal. The slow
update rate and repetition of application frames on the
display cause a number of problems and limitations for VR-
applications. Examples of such limitations are inefficient
latency reduction [2], inefficient crosstalk reduction [3], and
perceptual artifacts in the form of judder [4].

Our motivation for this paper is that we desire an
architecture where the display can be controlled more
specifically. In particular, we want to replace the default
behavior of repeating display frames by a programmable
layer that can execute a custom program for every individual
display frame. This layer should run independent of the
application in such a way that the generation of new
application frames is not postponed. We call this layer the
programmable display layer (PDL), which is illustrated in Fig. 2.
The application is responsible for generating new applica-
tion frames. In addition to color and depth, it also generates a

Published by the IEEE Computer Society

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

}———1—6—16@—87{ 2x 60Hz Stereoscopic Display
Tracki 8.3ms
racking JStArt W00 te €04 f Display 'y 000 | 0T
System

Lo-1 | Rl Lt ‘Rn—l Ln-1 | Rn-l ‘ Ln-1 | Ro-1 ‘ Lol Rnl Ln1 Ral ‘ La-1 Rnl Lo Rn
v
rl'racker Application (Simulator) ‘ Rendering Frame n ‘ Displayi
Rendering | L R R
System I ms 50ms d 40ms i Sms |
Tstart Treport Trender Tdisplay Tend

(@) (b)

Fig. 1. (a) Logical overview of a classic VR-architecture. The user initiates an action at T,,, the tracking system reports a pose at T,,., the
application completes the generation of a scene graph at 7.4, the rendering system renders the scene graph, and the resulting application frame
is sent to the display at Ty;,,.,- The new application frame will be visible at 7¢.,,,. (b) Timeline overview of the classic VR-architecture. Two processes
are running in parallel: the application and the display. During the time required to process tracking data, generate a scene graph, perform rendering
and sending the resulting application frame to the display, and several consecutive display frames are presented on the display. Application frames
are repeated several times on the display, until a new application frame has been generated.

: Display :
Tracking s, Display In Rn Ln Ro Lo Rn Lo|/Rn Lo Rn Ln Rn Ln Rn:
-4 User - . - Frames Ln-1 Rn-1 iln| Ra
System AT Device —L ;;/8 -7/8] —g/S 7-76/87 ;/8 —5/8 ;‘1/8 -4/787 | 7-}/8 —3/8 /—3/8 -2/8 L -'1/8 -1/8 /E v
Tracker = e /\E
4 -t
ystem AIZI/JIC ation Tracker‘ Application (Simulator) ‘ Rendering Frame n ‘ T
Frames Tstart Treport Trender Tdisplay

(@) (b)

Fig. 2. (a) Logical overview of the image warping architecture. To change the default display behavior of repeating frames until an update is
available, we have added an extra PDL. The architecture operates similar to a classic architecture, except that application frames are sent to the
PDL instead of the display. The PDL performs image warping and sends intermediate frames to the display every time a new display frame is
required. (b) Timeline overview of the new architecture. Three processes are running in parallel: the application, the PDL, and the display. New
applications frames are sent to the PDL at T}, (T). The PDL uses these application frames to continuously generate new, intermediate display

frames and sends them to the display when required (R).

per-pixel 3D motion field. The PDL receives application
frames in the form of per-pixel color, depth, and motion data.
In order to generate consecutive display frames, the PDL
performs per-pixel depth-image warping by utilizing the
application data and 3D motion field. In this way, image
warping is performed in real time and parallel with the
application that is busy generating new application frames.
The PDL architecture can be used for a wide range of
algorithms. We will describe three algorithms that have
immediate benefit for VR. The first algorithm provides
smooth motion, or judder reduction, by generating inter-
mediate display frames by depth-image warping. This is
especially beneficial for walk-throughs of large scenes.
Second, we describe an algorithm for fine-grained latency
reduction at display frame level. Using the PDL, we are able
to apply viewpoint prediction for every display frame,
instead of only once every application frame. In this way,
our architecture provides an environment where perceived
overall latency is reduced. This will reduce motion sickness
and user fatigue [5] and increase task performance [6]. Third,
a crosstalk reduction algorithm for consecutive display
frames is implemented. This simplifies the implementation
and increases the quality of the crosstalk reduction algo-
rithm, resulting in improved stereoscopic images.
Furthermore, the implementation of the PDL architecture
has a number of practical advantages. First, no special
hardware is required; only commodity components are used
to implement the architecture. Second, existing applications
require only minimal modifications to their rendering
pipeline. As long as an application can provide a motion

field, the architecture can be used. The generation of a
motion field can be realized effortlessly when geometry is
specified in a scene graph. In this case, the application
requires no changes at all, as the motion field can be
generated during common scene graph processing. Third,
there are no limitations to the number or types of primitives
rendered. The architecture is pixel-based and shows con-
stant runtime performance, regardless of the complexity of
application processing. Therefore, for many common appli-
cations, the use of the architecture is virtually free of cost.

2 RELATED WORK

Shaw et al. [7] proposed the Decoupled Simulation Model
(DSM). The DSM utilizes four decoupled components for
computation, geometry, interaction, and presentation. Each
of these components can independently generate events.
Most other VR architectures operate using a similar model,
although the exact components may be different. All of
these architectures share the fact that application frames are
repeated because the display frame rate is not the driving
rate of presentation. Olano et al. [2] noted the need to
separate the image generation from the display update rate
in order to combat rendering latency. They propose the
SLATS system, which guarantees only one display frame
(16.7 ms) of latency. This is achieved by insisting that all
work for one display frame is finished during the frame
immediately before it. The architecture consists of a number
of graphics processors, a ring network, and an additional
number of rendering processors. The graphics processors

SMIT ET AL.: A PROGRAMMABLE DISPLAY LAYER FOR VIRTUAL REALITY SYSTEM ARCHITECTURES 3

generate rendering primitives in batches, which are then
sent over the ring network to the rendering processors. In
turn, the rendering processors are responsible for rendering
the primitives and scanning out the resulting images to the
display. In this way, the rendering processors operate
independently of the graphics processors in updating the
display, and a single frame of latency is guaranteed. This
method is limited by the constraint on rendering time
available to the rendering processors; only a small number
of primitives can be rendered, and shading must not be
complex and time-consuming. The architecture proposed in
this paper provides the same guarantee with respect to
updates; however, it does not place any constraints on the
number of primitives or complexity of rendering.

Several other architectures follow the approach of Olano
et al. by attempting to update the display at every display
frame; however, different means of achieving this are often
used. Kijima and Ojika [8] proposed an architecture to
reduce latency effects on HMDs. Scenes are first rendered
with a greater field-of-view than the HMD provides. Next,
the user’s head motion is extrapolated at every new display
frame and the image is shifted accordingly on special HMD
hardware. Stewart et al. [9] proposed the PixelView
architecture. Instead of rendering a single 2D image for a
specific viewpoint, they construct a 4D viewpoint-indepen-
dent buffer. Then, for every display frame, a specific view is
extracted from the 4D buffer according to a predicted
viewpoint. The architecture requires the entire scene to be
subdivided into points, or alternatively into specific types of
primitives the system can handle. An implementation is
provided using custom-built hardware. Finally, Regan and
Pose proposed a virtual address recalculation pipeline [10],
[11], where for each application fame, individual objects are
rendered into distinct buffers. All these buffers are then
transformed and combined to produce display frames at a
fast rate. This approach shows similarities with the Talisman
architecture by Torborg and Kajiya [12] and to some extent,
layered depth images [13].

Depth-image warping is a technique that generates novel
views from a given reference image considering per-pixel
color and depth and performing a reprojection step. Image-
based rendering by 3D warping was introduced by McMillan
and Bishop [14]. Postrendering 3D warping is a particular
technique thatattempts toincrease the overall frame rate of an
interactive system by generating new views between the
current viewpoint and a predicted one [15]. Layered depth
images (LDIs) [13] combine several depth images from
nearby views into a layered representation to address
occlusion artifacts. A common problem with all of these
approaches is that they often require custom hardware, or
that the existing applications” rendering loops need to be
modified significantly. Also, most approaches take into
account viewpoint changes in static scenes only. Our
approach is primarily based on a combination of these earlier
proposed image warping techniques. In particular, the core
image warping equations consist of a modified version of the
image warping equations proposed by McMillan and cow-
orkers [14], [15] adapted for modern graphics hardware and
dynamic scenes. There are a number of advantages to our
approach. First, the implementation operates in real time ata

—

System Memory

. . | SR |
Application
Pixel Data Displays
A
v * Motion Data [
Client |

GPU Misc Vars Server
GPUs

A

PCle Bus '

Fig. 3. Logical hardware overview of the image warping architecture.
The application runs on a client GPU and sends pixel and motion data to
shared system memory over the PCle bus. Server GPUs implement the
PDL and read the pixel and motion information to generate display
frames. Multiple server GPUs are supported in order to drive several
displays, as required for tiled displays or CAVE-settings. Our imple-
mentation currently uses a single client and server GPU to drive a single
desktop-VR display.

60 Hz stereoscopic display using commodity hardware only.
Second, since our approach records optic flow in the form of
per-pixel motion, we support dynamic scenes by providing
prediction and extrapolation for both viewpoint changes and
moving simulation objects (see Section 4.2). Third, multiple
client-side viewpoints are supported, where the placement of
these viewpoints has been based on the optic flow informa-
tion of the scene. We show that for dynamic scenes, this
results in higher quality images than approaches based on
camera prediction alone.

We proposed a different variant of the PDL architecture
in the past [16]. While the governing ideas and design of the
two architectures are the same, some of the implementation
details vary; most notably with respect to image warping.
The earlier work is focused at improving performance and
image warping quality and introduces a number of
extensions to achieve this. Instead of using a 3D per-pixel
motion field, the client assigns a unique ID to each
geometric object in the scene and transmits per-pixel object
IDs and the corresponding object transformation matrices.
In this way, per-pixel motion can be estimated according to
matrix transforms. The benefit of this approach is that data
size is reduced, thereby increasing runtime performance.
Additional extensions are the improvement of image
quality due to more advanced image warping algorithms
using dynamic splat sizes, and the ability to use two client-
side viewpoints in real time due to increased performance.
In this paper, we are primarily concerned about the high-
level architecture design, its use for VR, and the comparison
with classic VR-architectures. We examine the effect of
client-side camera placements and compare the architecture
to a classic level-of-detail method. A motion field is used,
instead of object IDs, to perform image warping and client-
side camera placement. The architecture is not restricted to
this approach, and the previously mentioned extensions can
be implemented as well. In fact, some of the improved
image warping algorithms have been used in Section 5.

3 ARCHITECTURE

An overview of the architecture’s hardware implementation
is given in Fig. 3. The architecture is implemented using a
parallel multi-GPU system. The GPUs are connected over
the PCle bus and communicate using a large segment of

shared system memory. The first GPU, which we call the
client, is responsible for rendering application frames. These
frames contain a fixed number of rendered scenes from
various viewpoints. The viewpoints used for rendering are
not necessarily equal to the user’s viewpoint. In addition to
pixel color information, the client also generates per-pixel
motion and depth information. Once generated, all applica-
tion frame data are transferred over the PCle bus into a
synchronized circular producer/consumer buffer in shared
system memory. The second GPU, which we call the server,
is responsible for generating intermediate display frames
and updating the display device. Whenever the display
needs to be refreshed, the server polls the shared system
memory to determine if a new application frame is
available. If a new frame is available, it is copied from
shared memory onto the GPU. Otherwise, the previously
received application frame is reused. Image warping is then
used to generate an intermediate display frame from the
latest pixel and motion data, which are subsequently sent to
the display device.

3.1 Client Implementation

The client starts by generating a left and right-eye
stereoscopic scene for rendering as normal. It then renders
the scenes into GPU memory using multiple render target
(MRT) and frame-buffer object (FBO) functionality. For
every geometric object that is to be rendered, the client
stores its transformation matrix for the previous application
frame M,,., and its current transformation matrix M., in a
hardware vertex program. Then, the object is sent to the
GPU for rendering using a vertex and fragment program.
For each vertex V, the vertex program calculates the
previous position Py, = M., - V; and the current position
P, = M., -V;. Both vectors are then passed to the
fragment program, where they are automatically interpo-
lated per pixel by the hardware. For every pixel, the
fragment program calculates the value AP = P, — Py,
resulting in a 3D motion vector per pixel. Since vertices are
transformed into camera space, the motion vector AP also
resides in camera space. Finally, the fragment program
outputs two data vectors to the hardware FBO. The first
vector consists of four 8-bit integer color values Py =
(B,G, R, A) representing the rendered pixel’s color. The
alpha channel is used as a flag to indicate the motion data is
valid for this pixel. The second vector consists of four 16-bit
floating point values P,ion = (AP*, APY, AP? V%) repre-
senting the pixel’s motion data in the first three components
and its depth in the last component. The required space per
pixel is, therefore, 12 bytes.

Once the pixel and motion data have been generated, a
free slot in the circular producer/consumer buffer is
acquired and the FBO is downloaded from the GPU
hardware into shared system memory using pixel-buffer
objects (PBOs). Additionally, the current and previous
camera matrices are stored in shared memory to allow the
server to make an estimate of the camera motion. This is
described in more detail in Section 3.2. The client then loops
and proceeds to generate the next application frame. Note
that the client generates a left- and a right-eye application
frame, each with their own pixel and motion data. Both
frames are stored in shared memory in a single iteration;

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

APxyz
nyz e

o ,,Axyz Anyz o .. -
Pxyz e

Mproj Mproj

\ AMview\V;
[]

Fig. 4. Server image warping implementation. A 2D pixel I, is
converted back to a 3D pixel P,,. using its depth z and the camera
projection matrix M,,,;. Next, P,,. is additively warped for object motion
by A,,., resulting in AP,,.. Camera viewpoint warping is performed by
transforming AP,,. by the predicted camera difference AM,., and
projecting it back to 2D using M,,,;. Finally, the pixel is rendered at
location R, .

therefore, we effectively treat a 120 Hz stereoscopic display
as a single 60 Hz display with twice the resolution.

3.2 Server Implementation

The server first polls the producer/consumer buffer in a
nonblocking fashion to see whether a new application
frame is available or not. If a frame is available, an OpenGL
hardware buffer is mapped and the data are uploaded
directly to the GPU from shared memory. Since data
transfers are relatively slow, we chose to calculate all the
required data from a minimum of transmitted data. Once
the new application frame is uploaded to the GPU, server
processing continues in the same fashion as when no new
frame was available.

When no new frame is available, the server simply binds
the previous frame to OpenGL. This requires no data
transfer, as the frame still remains in GPU hardware
memory. A At value is calculated to determine how much
motion extrapolation is necessary, which is then passed to a
vertex program. In order to render the extrapolated display
frame, we bind the pixel motion data P,,i0n to an OpenGL
vertex array and the pixel color data P, to a color array.
Both arrays have a size of wx* h, where w and h are the
display width and height in pixels, respectively. All the
w* h pixels are drawn through a single call to gIDrawAr-
rays(GL_POINTS), which renders every pixel as a separate
point/vertex.

The core of the motion extrapolation algorithm is
contained in the server’s vertex program, which is executed
for every pixel sent by the client. The steps of the algorithm
are outlined in Fig. 4. The first step is to reconstruct the pixel’s
3D coordinates in camera space from its 2D pixel coordinate
and the depth V? stored in P,;,,ion. The 2D pixel coordinates
I, are not explicitly sent to the GPU, but calculated to save
bandwidth. The Nvidia G80 series of GPUs is capable of
performing integer logic in the vertex program; additionally,
every vertex that is drawn in a call to glDrawArrays()
receives a unique linear integer ID describing its position in
the array. This ID is available in the vertex program as
gl_VertexID. Since every vertex maps exactly to 1 pixel for
our point-cloud rendering, we can calculate the pixel’s
coordinates I, , = (gl-VertexI D%w, gl_VertexID/w), where
w is the display width in pixels. The 2D integer coordinates
are then converted to a [—0.5, 0.5] range on the camera near-

SMIT ET AL.: A PROGRAMMABLE DISPLAY LAYER FOR VIRTUAL REALITY SYSTEM ARCHITECTURES 5

plane, after which the 3D coordinates can be calculated using
the camera’s projection matrix: P, = (—V? - Prskew) — 2+
Ph,fov . ‘/ci,r . Ir and F’y =2 Pvfov . V;Zr . Iy/ where]Dhskew is
the horizontal off-axis projection parameter gl_Projection-
MatrixInverse[3][0], and P}, Pyfo are the projection field-
of-view parameters gl_ProjectionMatrixInverse[0][0]/[1][1].

After the pixel’s 3D coordinates have been recovered, the
corresponding 3D motion vector AP is retrieved, scaled by
At and subsequently added to the pixel’s coordinates. This
results in an extrapolated scene. For the extrapolated
camera transformation, we either make a prediction based
on the previous camera transforms provided by the client,
or we sample the head tracker device for an updated pose if
one is available. In this way, we can provide greater
accuracy for the head tracking prediction. This will be
discussed in more detail in Section 4.2. Let the original
camera transform be given by M., and the updated
sample or prediction by M,,.;, we can then transform the
pixel by M,,..q - Ml in order to warp the image for camera
motion. Finally, the 3D pixel is projected back to 2D,
making use of the original projection matrix. The entire
scene is rendered to a frame-buffer object in GPU memory.

Once an intermediate, warped display frame has been
generated, the server performs a crosstalk reduction
algorithm on it. Both hardware buffers containing the left-
and right-eye images are used as input to the nonuniform
crosstalk reduction algorithm proposed by Smit et al. [3].
This is described in more detail in Section 4.3.

3.3 Image Warping Errors
Image warping is a technique that generates pixel errors in
the output proportional to the magnitude of warping
required. We distinguish between three types of image
warping errors: prediction errors, occlusion errors, and
warping artifacts. Prediction errors are due to the fact that
per-pixel motion prediction is imperfect; therefore, warped
pixels are potentially rendered at a different location than
they should be. Occlusion errors occur when parts of the
scene in the original application frame are occluded by
other geometry. Since image warping is only performed for
the depth layer closest to the virtual camera, these occluded
pixels are not warped. This results in a small gap of missing
geometry in the warped frame. Finally, warping artifacts
are due to the n-1-mapping of warped pixels; if the original
surface of pixels is smaller than the required warped
surface, there will always be some screen pixels left blank.
This effect results in small holes in the warped mesh.
Occlusion errors and warping artifacts can, in part, be
reduced by implementing more advanced and complicated
image warping techniques; however, doing so may be
prohibitively time-consuming, as the server component has
very limited available processing time. A quantitative
evaluation of the magnitude of the introduced warping
errors, compared to a classic level-of-detail method, is given
in Section 5.

3.4 Camera Placement Strategies

The PDL architecture supports the use of multiple client-side
viewpoints. The client generates application frames from
multiple viewpoints, which are transmitted and subse-
quently warped to a single viewpoint on the server side.

Static Prediction-based
Camera Placement Camera Placement

Optic-flow-based
Camera Placement
Scene Motion

Scene Motion Scene Motion

- - -

NS
o |
Camexx v/ \‘

Motion ® Clienr2
Client 1

> TSN |
AL N
@ G g N\
Motion
Client 1 Original Server
Viewpoint

Client2 . %/
Camera“ @)
Client 2 Motion Client 1

Fig. 5. Schematic overview of the three different client-side camera
placement strategies. The static strategy always places the client
cameras in fixed positions relative to the server viewpoint. The
prediction-based strategy places the second camera according to the
predicted pose of the camera in the next frame, ignoring scene motion.
The optic-flow-based strategy implicitly takes the combined scene and
camera motion into account and places the second camera according to
averaged per-pixel optic flow. For the latter two strategies, the first
camera is always placed at the server’s viewpoint.

The challenge is to determine how many client-side cameras
to use and how to choose the pose of these cameras in order
to achieve the maximum warped image quality at the server
side. The most notable and disturbing type of error in image
warping is due to occlusion. Therefore, client viewpoints
should be chosen in such a way as to minimize potential
occlusions during warping. Another aspect is that of view-
port clipping; geometry outside the client’s view frustum
cannot be warped into the server’s frustum because it is
never rendered. For this reason, the field-of-view (FOV) of
the client cameras should, in general, be larger than the
server’s FOV to avoid viewport clipping. However, these
two approaches may result in loss of image quality. Since
image warping errors are dependent on the distance between
the source and target images, the further client viewpoints
deviate from the target viewpoint, the larger the errors
become. Also, increasing FOV while keeping the number of
pixels in the viewport equal effectively decreases resolution,
and thus, image quality. Hence, the camera placement
strategy should also maximize image quality.

We distinguish between three types of client-side camera
placement strategies: static, predictive, and optic flow based.
These strategies are schematically depicted in Fig. 5. A static
strategy simply places the cameras in fixed positions relative
to the latest known sensor data. Other strategies have been
developed to efficiently place client cameras based on sensor
prediction [17]. It was shown that reasonable results can be
obtained by using two client-side views: one rendered from
the camera viewpoint in the current frame and other from
the predicted future camera viewpoint in the next frame.
These strategies assume static scenes where the camera is
the sole moving entity. For static scenes, once an image has
been rendered from a specific viewpoint, it will remain valid
throughout the lifetime of the application. Therefore, this
strategy can reuse old imagery and the client only renders
and transmits a single, predicted viewpoint for each frame.
However, for dynamic scenes, good client-side camera
placement is more challenging. Since objects are moving,
client viewpoints should not be determined based solely on
camera movement. What is needed is an intelligent camera
placement algorithm that is based on the motion of

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

Fig. 6. Interactive visualization of a large model. A user is examining
the 17M polygon coral model on a Samsung HL67A750 60 Hz
stereoscopic DLP TV using LCS glasses (for image capturing
purposes, a monoscopic image is displayed at screen-filling HD
resolution). Head tracking is performed by a Logitech head tracker
running at 50 Hz. The model can be interactively rotated using 6 DOF
optical tracking running at 60 Hz. The rendering of the model is done
at 6 Hz only. Therefore, on a classic architecture, new application
frames are generated at a maximum rate of 6 Hz. Using our PDL
architecture, we can generate intermediate display frames at 60 Hz
and sample the input devices accordingly.

individual objects in the scene. We believe that this is
possible by making use of per-pixel optic flow. Instead of
placing client cameras according to the predicted motion of
the server camera, one could place client cameras according
to the optic flow of the scene at that time. In this way, object
and camera movement both implicitly contribute to camera
placements. In Section 5, we will evaluate the effect on image
quality for these three types of camera placement strategies
in a practical setting.

4 PDL BENEFITS FOR VR
4.1 Smooth Motion

The experimental psychology literature describes an effect
where motion causes a single object to be perceived as
multiple objects [4], [18]. In the video-processing commu-
nity, this effect is also called judder and is caused by
repeated application frames, as shown in Fig. 7. If
application frames are generated at a lower rate than the
display frequency, multiple display frames will be display-
ing a moving object in the same position. Next, when a
positional update is generated, the object will suddenly
jump to this new position. The human visual system has
difficulties interpreting these sudden large changes, and the
result is that multiple objects are perceived. The presence of
judder degrades perceived image quality, and may lead to
increased user fatigue. Using our proposed architecture, we
can eliminate repeated application frames by generating
extrapolated display frames. Observers reported that the
use of our architecture completely eliminated the judder
effect. Hence, one of the benefits of using our architecture is
the appearance of smoothly moving objects due to the
absence of judder.

A Real position
@nrnnen Normal rendering Pkl ’
g Latency reduction s
:‘g Image Warping preah :
£ I e SYRCECTRITRIRS
- Pk
Ap

1 N Time o

[r L

At 1+ Af = Display frames

= Tend — Tstart = Aplication frames

Fig. 7. Timeline for latency reduction. Real object position is depicted by
the solid line. Rendering an application frames takes an amount of time
equal to At, during which the object moves by an amount of Ap. Normal
rendering samples the object’s position at the beginning of rendering
and renders it in that location; however, in reality, the object has already
moved by Ap when the frame is finally displayed. Classic latency
reduction predicts the object’s position at the time of display instead of
the time of rendering. Since new display updates only occur once every
application frame, the object remains in the same position for the entire
duration At. With our image warping architecture, the object’s position is
predicted every display frame A f, resulting in more accurate prediction
on average.

An example is shown in Fig. 6. A 17 million polygon
isosurface model is made from a CT scan of a coral. The
user is viewing the model on a stereoscopic display
operating at 60 Hz using active stereoshutter glasses. Head
tracking is provided by an acoustic head tracker that
operates at 50 Hz. Finally, the model can be interactively
rotated by means of 6 DOF optical tracking that generates
reports at 60 Hz. The rendering of such a large model,
however, is relatively slow and is done at a rate of only
6 Hz. Therefore, application frames are generated at 6 Hz.
This situation is similar to a walk-through of a large, static
scene. In these situations, when the rendering of VR-
applications becomes very slow, users will observe latency
effects due to the slow update rates of the display (once per
application frame). Using our architecture, we can update
the display with extrapolated display frames at a higher
rate. A combination of camera prediction and sampling is
used, as described in Section 4.2, resulting in a feeling of a
more responsive virtual world.

4.2 Latency Reduction

End-to-end latency in VR is defined as the time delay
between an action and its observed effect. Generally, this is
the delay between moving an interaction device and seeing
the rendered result on the display. A typical scenario is
depicted in Fig. 1. First, a user initiates an action at time
Titare and the tracking device reports a pose at Tcpore. The
application then generates an updated scene graph and
starts rendering this at time 7}.,4,. Once rendering is
complete, the newly generated application frame is scanned
out to the display at time Ty;gpiq,. The first updated display
frame is completely visible at time 7,4. For a stereoscopic
display, it is somewhat difficult to determine exactly when
Tena occurs, so a reasonable estimate is at the display’s
second vertical blank signal. End-to-end latency is now
defined as At = To,q — Tstart-

Fig. 7 shows the effect of end-to-end latency on rendering
in VR. Suppose we run an application where there is an

SMIT ET AL.: A PROGRAMMABLE DISPLAY LAYER FOR VIRTUAL REALITY SYSTEM ARCHITECTURES 7

interaction device (usually, a head tracker) or object moving
at a constant velocity over a 1D path. The position of the
object set out against the application time is then a straight
line. The application starts by sampling the object’s position,
and then, renders it. Generating and rendering an updated
application frames takes an amount of time shown as At.
However, during this time At, the object moves by an
amount of Ap; therefore, when the updated application
frame is visible on the display, the object is already at a
different location using normal rendering. An often-used
solution is to predict the position of the object at a time At in
the future using Kalman filtering. In this way, the object is
rendered at the position where it should be when the
display is actually updated. This approach is called latency
reduction or dead reckoning. Note that the object remains
visible at the same location on the display until a new
application frame is generated and displayed, regardless of
the display frame rate.

Since our architecture renders predicted, extrapolated
display frames, it is well suited for performing latency
reduction. For every new display frame, we extrapolate all
the pixels by image warping according to a prediction of At
and the scene’s motion information. In this way, the scene is
warped to where it should be at the time of display,
precisely corresponding to normal latency reduction. Con-
trary to normal latency reduction, we do not only predict
for a time step At in the future, but for every display frame,
we also predict an extra time step Af. This scenario is also
shown in Fig. 7.

Instead of predicting all motion, it is also possible to
obtain additional samples of the interaction device. For
every display frame, we poll the interaction device to see if
a new pose report is available. If this is the case, the latest
known pose is used instead of a prediction, after which the
scene is warped accordingly. This allows for a higher
sampling rate of the interaction device, resulting in fewer
prediction errors than with regular latency reduction,
where the device is sampled only once per application
frame. Furthermore, as can be seen from Fig. 7, the rate of
visual feedback is higher using our architecture for latency
reduction. Even with regular latency reduction, the object’s
position on the display is only updated once every
application frame. Using our architecture, the position is
predicted and possibly sampled every display frame,
resulting in a faster observed response from the interaction
device. This is especially beneficial for applications using
head tracking, as end-to-end latency in head tracking is
considered to be the primary source of motion sickness [5].

A problem occurs when only the user’s viewpoint is
extrapolated, but not the simulation or scene itself. This is
an effect that may occur when scene graphs are rendered
repeatedly from different viewpoints before they are
updated by the simulation, which is a typical approach
for existing architectures providing viewpoint extrapolation
(e.g., [9], [8], [7]). An example is given in Fig. 8. Imagine a
head-tracked observer is following a moving simulation
object. Simulation updates are generated in the form of new
application frames at time ¢y, and ¢;; therefore, the object
jumps from one location to the next at ¢;. When predicting
head tracking motion, intermediate display frames will be
generated between these two application frames. A sample

to to

A
A.\A ti2 A P

¥ - u

fan/ Y
2%

(2) (b)

Fig. 8. Synchronization issues between head tracker predictions and
simulation. (a) A user is following a moving simulation object from ¢, to
t;. Viewpoint extrapolation predicts the user’'s viewpoint Aa at t;),;
however, this does not take into account object position, causing the
user to miss the object. (b) Our architecture also takes object motion into
account and predicts the object’s position Ap at ¢, 5, in addition to the
viewpoint Aga, allowing for the object to be followed correctly.

intermediate frame is shown for time ¢,/, in Fig. 8a. The
user’s viewpoint change is predicted by Aa and the scene is
temporarily updated for that specific viewpoint. However,
when the simulation is not updated as well, the object will
remain where it was at time ¢, until a new application frame
is available. This causes a visual artifact when the user is
trying to follow the moving object. Using our architecture,
we perform motion extrapolation for the entire scene,
including the simulation objects and their predicted motion.
Therefore, in the case of our architecture, the object’s
position at time ¢, ; is also predicted by Ap and the user can
follow the object correctly. This is shown in Fig. 8b. In effect,
our architecture synchronizes the prediction of both
simulation rendering and head tracking.

4.3 Crosstalk Reduction

Active stereo displays operate by showing sequential
display frames for the left and right-eye views, in
combination with active liquid crystal shutter (LCS) glasses,
which block the view for the eye currently not displayed.
Stereoscopic displays suffer from crosstalk or ghosting, an
effect that reduces or even inhibits the user’s ability to
perceive depth. Crosstalk is caused by the slow decay of
CRT display phosphors, LCS glasses that do not go
completely opaque, and inexact timing of the LCS glasses
[19]. The causes of crosstalk are all inherently related to the
sequential display of left and right-eye display frames, as
light leaks from the previous to the current display frame.

Methods exist to reduce or eliminate the effect of
crosstalk in software. One such method was proposed by
Smit et al. [3], [20]. They reduced visible crosstalk by
estimating the amount of light leakage between the
previous and the current application frame, and then,
performed a correction step to compensate for this added
intensity. However, this correction has to be performed
between display frames, not application frames.

Since our architecture guarantees updates of individual
display frames, crosstalk reduction can be performed by the
programmable display layer for display frames instead of
application frames. Crosstalk is now guaranteed to be
reduced for consecutive display frames, as it should be,
thereby eliminating reduction errors introduced due to
repeated application frames. The benefit of our architecture
in this case is better quality crosstalk reduction and a more
straightforward implementation.

8
TABLE 1
Architecture Performance for Various Resolutions
Resolution 640x480 | 800x600 | 1024x768 | 1280x960
Number of Pixels 307200 480000 786432 1228800
Frame Size (MB) 7.0 11.0 18.0 28.1
Data Transfer (ms) 3.1 47 7.4 11.6
Rendering (ms) 3.8 5.7 8.8 13.6
Total Time (ms) 6.9 10.3 16.2 25.1
Performance (Gpix/s) 1.03 1.06 1.11 1.12
Throughput (GB/s) 2.28 2.36 2.42 2.43

Data transfers and rendering take almost the same amount of time.
Per-pixel performance is nearly constant, showing that performance
scales linearly with the amount of pixels.

5 RESULTS

Our implementation of the PDL architecture is realized
using an Nvidia GeForce 8800 GTX for the client GPU and a
stereoenabled Nvidia Quadro FX5600 for the server GPU.
The system consists of an Intel Q6600 2.4 Ghz quadcore
processor; therefore, the client and server processes can
each utilize a separate core, as well as a GPU. Two separate
stereoscopic displays have been used: an iiyama Vision
Master Pro 512 22” CRT monitor operating at 120 Hz in
order to achieve 60 Hz per eye, and a Samsung HL67A750
60 Hz stereoscopic DLP TV. For head tracking, a Logitech
Acoustic head tracker running at 50 Hz is used.

5.1 Architecture Performance

In order to examine the architecture’s runtime performance,
we run a sample application program on the client and
measure the time required by the server for data transfers
and rendering. We only examine the server process as it is
the limiting factor of the architecture. Client processing can
take an arbitrary amount of time; however, the server
processing must be performed at the display refresh rate to
guarantee updates every display frame. There are two
different types of display frames the server is required to
render: newly received application frames that require data
transfers, and intermediate extrapolated display frames that
do not require any data transfer. The server guarantees to
update the display at every refresh, regardless of the type of
frame currently being rendered. Therefore, we only
measure the performance for the slowest type of frame,
which are frames requiring data transfers.

Table 1 provides an overview of the server’s perfor-
mance for a number of different resolutions. Since the
stereoscopic display operates at 2x 60 Hz, there are ap-
proximately 16.6 ms available for the server to produce a
new display frame. Table 1 shows us, therefore, that the
maximum achievable resolution for this hardware setup is
1,024 x 768 pixels. At 1,280 x 960, the server can no longer
guarantee updates of the display every refresh. The overall
performance expressed in giga pixels per second is almost
constant. Larger resolutions are relatively faster due to the
reduced impact of initialization overhead, but the effect is
almost negligible. This means performance scales linearly
with the number of pixels. The same effect shows for the
throughput in gigabyte per second for transferring data.

It can also be seen from Table 1 that data uploads from
system-shared memory to the GPU and the rendering of
pixels are virtually equal contributors to the total processing

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

time per display frame. This shows the validity of our
approach to calculate the 3D positions of all pixels from
their depth, and so minimize data transfers. In case, we do
not calculate these positions in the vertex program, an
additional 4 bytes need to be transferred per pixel in case of
16-bit floating point values. The per-pixel transfer size is
then increased from 12 to 16 bytes, increasing transfer times
by 33 percent. Performance evaluation of the vertex
program shows that only a small portion of time is spent
on these calculations; definitely not more than one-third of
the total rendering time. A large amount of rendering time
is actually spent on crosstalk reduction.

Since performance scales linearly with respect to the
number of pixels, faster hardware will have a direct impact
on the maximum achievable resolution. Ideally, data
transfers between the GPUs should be done directly,
without the need to send data over the PCle bus to shared
system memory; however, this is not possible on current
GPUs—Nvidia’s SLI uses a video signal and cannot be used
to transfer digital information. Perhaps, future generation
GPUs will provide such capabilities, making the shared
system memory obsolete. Bandwidth over the PCle 2.0 bus
has been doubled compared to the currently used version 1.1
and will be doubled again by version 3.0; however, GPUs
cannot as of yet take full advantage of this increased
bandwidth. Future GPU versions are likely to perform data
transfers much faster. Therefore, we believe that even higher
resolutions, such as 1080p HDTV, are within reach.

5.2 Level-of-Detail Quality Comparison

When a frame rate of 60 Hz is to be guaranteed in a classic
VR-architecture, the only method to achieve this is to
reduce the computational load. To this extent, static level-
of-detail (LOD) methods are often used to reduce the
number of polygons rendered. The geometric models are
decimated by successively removing all those polygons that
are considered to have the least visual significance, until a
target number of polygons are reached for which a 60 Hz
frame rate can be guaranteed. In this section, we make a
comparison between the image quality of the proposed
image warping architecture and that of a static level-of-
detail method.

Two models are used for this comparison: the 10M
polygon Thai Statue model from XYZ RGB, Inc., and a 17M
polygon coral model. The former is a model of a scanned
statue with a relatively smooth, low-frequency surface, while
the latter is a model of a CT scan of a coral consisting of high-
frequency data and many holes in the surface. Both models
are good examples of large real-life polygonal data sets. To
estimate image quality, we recorded the 60 Hz image-
sequence output of the PDL image warping server for
approximately 1,600 animation frames. A prerecorded
animation sequence is used where the models rotate about
their Y-axis and the camera hoovers around the models
according to recorded user inputs. We call this the dynamic
animation sequence, since the objects as well as the camera
move. In Section 5.3, we will also use a static animation
sequence where the camera moves in similar fashion but the
objects remain still. In addition, we also record similar output
of a stand-alone reference implementation that renders every
animation frame as it should appear without error. Finally,

SMIT ET AL.: A PROGRAMMABLE DISPLAY LAYER FOR VIRTUAL REALITY SYSTEM ARCHITECTURES 9

e==|0D2 ===|0D4 ===L0D8 ==LOD16 ===LOD32 ==Warping/Optic flow

Fig. 9. Percentages of error pixels for each frame of a dynamic animation sequence. The top plot shows the errors for the 10M polygon statue scene;
the bottom plot the 17M polygon coral scene. The camera placement strategy used for image warping is the optic-flow-based approach. This
strategy occasionally results in a poor camera setup, causing the error spikes near frames 400 and 1,100. An overview of the average errors is given

in Table 2 under the dynamic scene heading.

we render the same reference scene using corresponding
LOD models that are decimated to various decreasing
amounts of polygons. For the PDL server, rendering and
recording are performed offline by running the client and
server in a special synchronized mode. In this way, a client
frame rate of 6 Hz is simulated in combination with a 60 Hz
server rate, i.e., for every application frame, we need to
generate 10 warped display frames. To improve the image
quality of warping, we used some extensions proposed by
Smit et al. [16], most notably a dynamic splat size to avoid
undersampling errors and the ability to use two client
viewpoints (see Section 3.4). In all cases, a resolution of
1,024 x 768 pixelsis used. The rate of object rotation about the
Y-axis for the dynamic scenes is 45 degrees/s. The extent of
the axis-aligned bounding boxes in rendering units of the
coral and the statue object are (130, 94, 83) and (235, 396, 203)
units. The translational and angular velocities for the camera
are different for each scene. For the coral scenes, the average
translational velocity of the camerais 27.2 and 37.2 units /s for
the dynamic and static scenes, while the average angular
velocities are 43.6 and 49.3 degrees/s, respectively. For the
statue scenes, the average dynamic and static animations’
translational velocities are 48.7 and 66.2 units /s, with average
angular velocities of 34.2 and 49.2 degrees/s.

For the level-of-detail models, we reduced the number of
polygons of each of the two models by fractions 2, 4, 8, 16,
and 32 of the total amount of polygons. For example, LOD-4
of the coral model consists of 4.25M polygons, while the
same level for the statue model consists of 2.5M polygons.
We were unable to find free, out-of-the-box software for
mesh decimation that could efficiently handle data sets of
10M polygons or more; most of the tools we found simply
hanged or quickly ran out of memory. Therefore, we split
the used models in separate chunks of 6M polygons each,
generated LODs for each chunk and then recombined the

meshes into a single whole. In order to achieve this, we
made use of the MeshLab software (version 1.1.1) [21].
Mesh decimation was performed using the quadric edge
collapse algorithm with a default quality threshold of 0.3 to
reduce the mesh to the various target numbers of polygons.

From the recorded images of the output of the various
algorithms and a reference implementation, we can
compare each image to the reference image in order to
determine the amount of error in the output images. For this
comparison, we use a simple and straightforward techni-
que. First, we filter both images using a small three-pixel
wide Gaussian kernel. Next, we convert both images to the
Lab perceptual color space. Finally, we compare the two
images on a pixel-by-pixel basis and mark a pixel as being
an error pixel if the distance between them is larger than a
threshold value of 10 units in the Lab space. The Gaussian
filter and the threshold value are used to avoid marking
very small individual pixel differences, which are generally
unperceivable, as errors. The final error value that is
reported for the image frame is the percentage of pixels
marked as error pixels.

Fig. 9 gives an overview of the errors for the dynamic
statue and coral scenes for each animation frame. Average
errors and their standard deviation are summarized in
Table 2. It is immediately obvious that the image warping
quality for the coral scene is superior to that of the LOD
approach for all levels. For the statue scene, the average
warping quality lies somewhere between LOD-4 and LOD-8.
There are two reasons for these large differences. First, the
original statue model appears to be severely oversampled,
since reducing the amount of polygons by half from 10M to
5M (LOD-2) hardly introduces any error at all. This is an
effect of the inherent smoothness of the statue model’s
surface. The second reason is that the coral model consists of
very high-frequency data and almost twice the number of

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

TABLE 2
Overview of the Average Errors and Standard Deviations
for Various LOD Methods and
Different Camera Placement Strategies

Statue Coral
Dynamic Scene Error | Stdev || Error | Stdev
LOD 2 0.03 0.01 10.01 3.84
LOD 4 0.33 0.16 1585 | 455
LOD 8 1.45 0.54 21.88 | 4.92
LOD 16 3.58 1.09 27.76 | 4.93
LOD 32 6.51 1.73 32.61 4.94
Warping / Static 1.48 1.39 2.16 2.08
Warping / Prediction 1.15 1.10 2.01 1.18
Warping / Optic flow | 0.72 0.61 2.10 1.31

Statue Coral
Static Scene Error | Stdev || Error | Stdev
Warping / Static 0.95 1.15 2.01 2.11
Warping / Prediction 0.63 0.35 1.90 1.03
Warping / Optic flow | 0.58 0.41 1.80 1.08

Error comparisons can only be made vertically between equal scene/
model combinations because different animations were used for each.
The PDL architecture was used to perform image warping using a static,
camera-prediction-based, and optic-flow-based client-side camera
placement strategy.

polygons. Since LOD-2 already introduces a significant error
for the coral, this model does not share the smooth,
oversampled nature of the statue and is less-suited to LOD
methods. Another observation that can be made from Table 2
is that the standard deviation of the error for the statue scene
is generally lower in the LOD case. The standard deviation
gives a reasonable estimate of the amount of occlusion errors
that appear and disappear from frame to frame. For warping,
the error is lowest when a new frame is received from the
client, and usually, highest when extrapolation is at its
maximum just before the receipt of a new frame. This
fluctuation in error leads to higher standard deviations.

In Fig. 10, both the frame rates of a stereoscopic reference
implementation and the average errors for warping and the
various levels-of-detail are given. For image warping, the
number of polygons on the client side has no effect on either
the frame rate or the quality, and therefore, plotted as
straight lines. The points of interest in this figure are the
crossing points between the quality and frame rate series.
For the statue scene, the crossing point for frame rate lies
somewhere half way between LOD-8 and LOD-16. This
means that in order to achieve 60 Hz frame rates with LOD
methods, we need to reduce the amount of polygons
roughly by a factor of 10 to 1M polygons. However, the
crossing point for the amount of error lies to the left of the
FPS crossing, between LOD-4 and LOD-8, where the errors
in both methods are considered equal. This means that if
both image warping and LOD run at 60 Hz for the statue
scene, the image quality for warping is better than that of
the LOD approach. For the coral scene, the FPS crossing is
not contained within the graph, meaning that even at LOD-
32, a 60 Hz frame rate is not achieved. There is also no error
crossing, which implies that the warping quality is always
better in this case.

o~ Statue LOD Error (%) == Statue Warping Error (%) Statue LOD FPS ==»==Statue Warping FPS
7 EY
s 7t 80
/ 70
5
ol 60
4 / 50
3 40
/ 30
2
20
1
o] 10
0 * 0
LoD2 Lop4 Lop8 LoD 16 LoD32
—&— Coral LOD Error (%) =M= Coral Warping Error (%) CoralLODFPS ==)¢==Coral Warping FPS
35 70
- // 60
N / %
” / ©
; / %
10 < 20
5 10
o = o = = - o
Lop2 Lon4 Lops LoD 16 LoD32

Fig. 10. Average errors and frame rates for level-of-detail methods and
image warping, set out against the various detail levels. The left vertical
axis indicates an average error percentage, while the right axis is used
to indicate frames per second. The points of interest are where the error
and FPS lines cross for image warping and the LOD approach. This
shows that when both approaches run at 60 Hz, image warping results in
the best image quality.

5.3 Camera Placement Strategies
In order to investigate the effect of client-side camera
placements, we have implemented and evaluated three
different camera placement strategies. In all three cases, we
make use of two client viewpoints. The first is a static
placement strategy, where the two cameras are always
positioned at a fixed offset relative to the latest known head
tracker pose. This is implemented by using a stereoscopic
camera setup with larger-than-normal eye separation and
increased FOV that is centered at the head tracker pose. The
second approach is a prediction-based strategy. The first
camera is positioned at the latest head tracker pose, while
the second camera is placed according to the predicted
future head tracker pose. Our implementation predicts
three application frames ahead instead of one, since this
results in better overall image quality. Furthermore, the
FOV of the first camera is equal to that of the server camera,
while the second camera is set to increased FOV. The third
strategy is based on optic flow. It is similar to the
prediction-based method, except that the position of the
second camera is determined according to the per-pixel
optic flow on the client side. First, the 3D motion field that is
generated by the client for the first camera is projected onto
the image plane. Next, the projected motion vectors are
averaged into a single vector. The second camera is now
rotated about the focal point of the first camera, where the
opposite averaged motion vector is used to determine the
magnitude and angle of rotation. The camera is placed
according to the opposite direction of the optic flow because
this strategy minimizes the introduction of occlusion
artifacts. As before, only the second camera is set to
increased FOV.

An important problem that arises when warping two
client-side viewpoints to the same server viewpoint is that
pixels from both viewpoints may be warped to the same

SMIT ET AL.: A PROGRAMMABLE DISPLAY LAYER FOR VIRTUAL REALITY SYSTEM ARCHITECTURES 11

(a)

(b)

‘_\.):lv-w .

=

WA,
kel

Frame: 00099 Error: 11.81% [Optic flow prediction]

5.49% [Optic flow prediction]

Fig. 11. From left to right are shown a reference image of how a rendered scene should look without error, the same scene as rendered by the image
warping process, and the errors made depicted by red pixels. (a) The worst frame, with the largest error, for the dynamic coral scene animation
sequence. (b) Another frame with a high amount of error. These large amounts of errors are almost always due to poor camera placements for the
two warped views. Note that these frames show a particularly high error because of erroneously predicted camera placements. In practice, the

amount of error is much lower for the vast majority of frames (see Fig. 9).

target pixel. The depth buffer correctly handles the situation
when these pixels belong to different parts of the geometry.
However, if the depth values are nearly the same, this
indicates that we are dealing with the same geometry and
one of the pixels needs to be discarded in favor of the other.
Our implementation tries to discard the lowest quality
pixel. Pixel quality is estimated according to the pixel’s
splat size, which is calculated using the expansion factor of
the projective image warping transformation [16]. Gener-
ally, a pixel with a smaller splat size, or smaller warping
distance, is a better quality pixel.

To compare image quality for the three-camera place-
ment strategies, we recorded the same type of animation
sequences as described in Section 5.2 for a dynamic and a
static scene using the coral and statue models. In the
dynamic scene, the models rotate about their Y-axis, while
for the static scene, they remain still. Both scenes contain
user-controlled camera movements. The results are tabu-
lated in Table 2.

First, we examine the statue scene. In the dynamic case,
we see that the average error is lowest for the optic-flow-
based strategy, followed by that for the prediction-based
and static strategies. The same is true for the standard
deviations of the errors, which give an indication to the
number of occlusion artifacts. The static strategy apparently
has difficulties with the motion in the scene and results in
many occlusion artifacts. The prediction strategy works
better because it manages to reduce occlusion artifacts by
predicting camera motion. However, object motion in the
dynamic scene is not detected by the prediction strategy.
On the other hand, the optic flow strategy is able to combine
camera and dynamic object motion and results in even less
error. In the static case, the results for the prediction and

optic flow strategies are nearly equal. This is due to the fact
that camera prediction alone almost perfectly predicts the
motion in a static scene. Again, both methods result in less
error than the static strategy.

The results for the coral scene are somewhat different.
First, the average errors for all three methods are very close
to each other. This can be attributed to the high-frequency
nature of the model; many image warping errors are made
at edges, hiding the impact of occlusion errors. Second,
while the standard deviations are lower for the prediction
and optic flow methods, there seems to be little difference
between a static and a dynamic scene. This can be explained
by the fact that the coral model is nearly convex with the
exception of many deep holes in the surface at arbitrary
orientations. The prediction methods succeed in dealing
with large self-occlusions of the model, but almost always
fail in handling occlusion for the surface holes due to their
arbitrary directions. The motion of the surface of the coral is
not a good indicator to handle all types of occlusion artifacts
in this case. An interesting property of both the prediction-
based and optic-flow-based camera placement strategies is
that for scenes with little motion, the image quality
converges to that of a directly rendered reference image.
This is due to the fact that the setup of the first camera is
equivalent to that of the server camera. This allows the user
to inspect a nearly still scene at close-to-maximum quality.

5.4 Latency

In order to measure and compare the latency of our image
warping architecture, we make use of a method for latency
measurement originally proposed by Steed [22]. A tracked
6 DOF input device as well as a bright LED are attached to a
swinging pendulum, resulting in sine-wave-shaped motion.
The tracked spatial position of the input device is depicted

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

TABLE 3
Measured Latency in Milliseconds for a
Stand-Alone Stereoscopic Reference Application
and the PDL Image Warping Server

Level-of-detail PDL Image-warping

LOD || Latency (ms) [Stdev || Latency (ms) [Stdev
1 3744 15.7 57.4 3.0

2 190.4 9.8 58.4 54

4 101.0 7.9 54.3 2.6

8 73.1 5.2 56.2 3.6

16 45.3 1.6 53.6 2.8

32 46.1 1.1 50.8 2.6

The rows show various levels-of-detail. The measurements were
repeated several time to produce an average and standard deviation.
It can be seen that the PDL is able to guarantee low and relatively
constant latency regardless the number of polygons rendered, which is
something that cannot be achieved with classic LOD methods.

on the display as a small bright sphere. A video camera is
used to capture the scene in such a way that both the
rendered sphere as well as the LED are visible. Using image
processing, the positions of the sphere and the LED relative
to the extreme points of the pendulum trajectory can be
determined. If the system is latency-free, these positions
should match exactly; however, due to the latency, the
sphere lags behind the LED. The amount of latency can be
found quite accurately by determining the phase shift
between the two sine-wave signals for the LED and
rendered sphere using a Fourier transform.

We measured the latency for a stereoscopic reference
renderer and our image warping architecture. The results
are shown in Table 3. The rendered scene consisted of the
17M polygon coral and the corresponding decimated
versions thereof. The scenes were rendered or warped as
normal, with the exception that after rendering the back

(a)

Frame: 00409 [‘ hz Referencely @

(b)

S ‘ R\
Frame: 01329 [60hz Reference]

N
Frame: 01329 Error: 2.56% [Optic flow prediction]

buffer was cleared in order to render the bright sphere
required for latency measurements. In each case, the input
device was a 6 DOF Polhemus Fastrak pen device, which
was either sampled just before rendering in the LOD case, or
resampled just before warping in the image warping case.
These measurements were repeated several times in order to
produce an average latency and a standard deviation.

6 DISCUSSION

We have described an architecture using a programmable
display layer to generate individual display frames.
Application frames are extrapolated using a per-pixel 3D
motion field and image warping techniques. Applications
gain the immediate benefit of judder, latency, and crosstalk
reduction. Subjective user feedback indicates that motion
appears more smooth and responsive; furthermore, cross-
talk reduction causes images to appear sharper and depth
perception is increased.

As was shown, the quality of the PDL architecture in
combination with image warping is competitive, and in
many cases, superior to classic LOD methods for large
models, especially when a 60 Hz frame rate is required. In
this case, the models need to be decimated to such extent that
a large reduction in image quality occurs for LOD methods.
image warping, on the other hand, can maintain high-
quality images because the original, high-detail geometry is
rendered, and subsequently, warped to produce 60 Hz
display updates. One further advantage of image warping is
that no preprocessing is required on the polygonal data sets.
In contrast, generating the decimated data sets for the
various levels-of-detail requires a considerable amount of
preprocessing time and resources. Under certain circum-
stances, for example, when large, static data sets are
regularly updated with newer versions, precomputing static

Frame: 00409 Error: 8.84% [Optic flow prediction]

Frame: 01329 Error: 2.56% [Optic flow prediction]

Fig. 12. Images similar to the ones shown in Fig. 11 for the dynamic statue scene. As before, from left to right are shown the reference and image-
warped frame and the depiction of the error. (a) The worst error frame, which could be considered an outlier. (b) A typical frame with high error that
occurs occasionally. Again, the error is much lower for the majority of frames.

SMIT ET AL.: A PROGRAMMABLE DISPLAY LAYER FOR VIRTUAL REALITY SYSTEM ARCHITECTURES 13

ﬁ

Frame: 00589 Error: 11.87% [C

(b)

9y ‘f)

! 1 (] '
i i N ol]
Frame: 00589 Error: 13.53% [No prediction]

Fig. 13. The importance of good client-side camera placements. From left to right, warped images of the dynamic statue scene are shown using no
prediction, camera-only prediction, and prediction based on optic flow. (b) The amount of error. Using no prediction results in high error due to the
relatively large scene velocity. Since the scene is dynamic, with a rotating object, the camera-only prediction method is unable to accurately predict
the scene’s motion and also results in high error. The optic-flow-based prediction method is able to correctly estimate the scene motion and results in
an almost error-free image. This shows that with good camera placements, image warping can produce very high-quality images.

LODs may be infeasible. In this case, the PDL can be used to
immediately inspect and interact with the updated data sets
in real time with minimum latency.

An important challenge in VR is the production of low-
latency systems. It can be seen from Table 3 that for classic
LOD methods, the latency depends strongly on the number
of rendered polygons and is generally high. Also, the
fluctuation in frame rate, and thus, latency is high. On the
other hand, for the PDL architecture, the latency remains
relatively constant with low standard deviation. This result
is due to the fact that the PDL operates at a constant 60 Hz
display frame rate and the input device is resampled prior
to warping. Low and constant latency are both important
requirements for the use of subsequent predictive latency
reduction methods [2]. While the PDL latency is already
low, integrating further predictive latency reduction may
result in a system that is almost latency-free, independent of
the rendering load. This is an important result that is very
hard to achieve using classic VR-architectures.

Due to the used image warping algorithms, the PDL
architecture has a number of limitations. First, scene
transparency cannot be handled correctly. While certain
simple cases of transparency can be resolved by the
generation of an extra depth layer, this is infeasible for
applications such as volume rendering that require many
transparent slices. A second class of geometry that our
architecture cannot handle easily is that of deformable
objects. While it is possible to warp the pixels belonging to
deformable objects, it is difficult to predict the structural
changes of the deforming surface. Per-pixel motion vectors
corresponding to the motion of the deformable surface may
help in dealing with this issue; however, this does not
immediately solve the problem of changing surface topol-

{ ‘“\ Rba l‘
.87% [Camera prediction]

3 F 4
3 =
Frame: 00589 Error: 11

Ty

(Ja) \‘k Fiw il
Frame: 00589 Error: 0.95% [Optic flow prediction]§

ogy. As of yet, how to best handle volume rendering and
deformable objects in an image warping architecture is still
an open problem.

We have used client-side optic flow in order to determine
effective camera placements for warping. In this way, two full
resolution client views were rendered and transmitted to the
server, which warped all of the pixels in both views to the
target viewpoint. When two pixels belonging to different
views warped to the same location, the estimated best quality
pixel was used. While this approach works, it is often quite
wasteful in the amount of pixels that are transferred and
warped only to be discarded in favor of a better quality pixel.
The first view that is warped generally produces the best
quality pixels, while the second view is mostly used to resolve
occlusion artifacts; yet, all of its pixels are transferred and
warped. A better approach would be to only render the subset
of pixels of the second view that are useful to resolve
occlusion artifacts. Furthermore, in the case of optic flow
camera placement, the entire view was averaged to produce a
single placement vector. In cases where the optic flow is very
different across sections of the view, it would be beneficial to
render these different subsections with different camera
placements. Rendering only subsets of pixels allows the use of
many different client viewpoints, depending on the optic
flow of the subset, without significant loss of warping
performance. However, one major obstacle is that standard
rendering systems are ill-suited to render low-resolution
images from many different viewpoints. This is due to the fact
that a renderer basically has to render all the polygons for
every such view, regardless the resolution—with the possible
exception of some increased culling. We believe that real-time
ray tracers are much better suited for such a task, since ray
tracers traverse pixels and look up the corresponding

14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

(@)

(b)

Frame: 01227 Error: 21.88% [LOD-8]

Frame: 01227 Error: 27.78% [LOD-16]

Frame: 01227 Error: 1.44% [Optic flow prediction]

Fig. 14. Comparison between level-of-detail approaches and image warping. (a) The left-most image shows the 17M polygon coral model where the
number of polygons is reduced by a factor of 8, while for the center image, the polygon reduction factor is 16. The right-most image shows the same
frame produced by image warping. (b) An visual overview of the error locations. It can be seen that image warping results in much higher detail, at
the expense of a different kind of errors in the form of holes. Note that the LOD-16 model is still not sufficiently decimated to allow for 60 Hz

rendering.

polygons. This allows us to render individual pixels from
widely varying viewpoints. An interesting approach would
be to ray trace relatively small blocks of pixels on the client
and determine the viewpoint used for ray tracing according
to the optic flow of the block. Each block is then warped by the
server as before. Such an approach may significantly reduce
occlusion artifacts, and possibly even increase performance.

The method we used to compare image quality between
reference animations and the output of the PDL is but one
choice of many. We chose to do a simple frame-by-frame
comparison using a small Gaussian filter kernel and a
threshold in the Lab perceptual color space; however, many
other ways are possible. Perceptual differences between
images can be obtained using programs such as the visible
differences predictor (VDP) [23]. We experimented with
using VDP for our image comparisons, but found that the
reported differences did not match well to the perceived
errors when using our system. Since we are dealing with
animations and not still images, a different perceptual
model should be used. We are primarily interested in errors
that draw the attention of the user in a disturbing way.
Usually, errors at the far edges of the display, or far away
from the point of attention, are not noticed at all by the user.
Also, small errors in shading are usually not perceived as
disturbing. The truly perceptually disturbing errors are
often caused by rapid flicker in the animation caused by
occlusion artifacts. Finding a good comparison method for
animation sequences that can pinpoint disturbing errors
like these is no trivial matter. We believe that such a method
would help a great deal in the further development of real-
time warping systems. Since accurately predicting per-
ceived differences in animations is a difficult problem, we

chose to use a simple and straightforward method that
matched reasonably well with our experience.

7 CONCLUSIONS

We have described an architecture that provides a
programmable display layer in order to generate display
frames at the refresh rate of the display. Display frame
motion extrapolation was performed on a dual-GPU
architecture using 3D image warping. The architecture
was shown to have a number of benefits, such as smooth
motion of large models, latency reduction, and crosstalk
reduction. Observers of our architecture reported that
motion appeared more smooth and responsive and the
judder effect disappeared; furthermore, crosstalk reduction
caused images to appear sharper with increased depth
perception. The architecture was compared to a classic
static level-of-detail method. In this way, we showed that
the PDL can produce images with competitive, if not
superior, quality. Furthermore, the PDL architecture
achieved low and constant latency regardless of the
rendering load; something that could not be achieved with
a classic VR-architecture. We conclude that the PDL
provides a very good alternative to static LOD methods
for some time to come.

REFERENCES

[1] MR. Mine, “Characterization of End-to-End Delays in Head-
Mounted Display Systems,” technical report, 1993.

[2] M. Olano, J. Cohen, M. Mine, and G. Bishop, “Combatting
Rendering Latency,” Proc. ACM Symp. Interactive 3D Graphics
(SI3D), pp. 19-24, 1995.

[3] F. Smit, R. van Liere, and B. Froehlich, “Non-Uniform Crosstalk
Reduction for Dynamic Scenes,” Proc. IEEE Virtual Reality (VR)
Conf., pp. 139-146, 2007.

SMIT ET AL.: A PROGRAMMABLE DISPLAY LAYER FOR VIRTUAL REALITY SYSTEM ARCHITECTURES 15

(4

(5]
(6]

(7]

8]

]

(10]

(1]

[12]
(13]

(14]

[15]

[10]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

PJ. Bex, GK. Edgar, and A.T. Smith, “Multiple Images Appear
When Motion Energy Detection Fails,” |. Experimental Psychology:
Human Perception and Performance, vol. 21, pp. 231-238, 1995.

W. Bles and A. Wertheim, “Appropriate Use of Virtual Environ-
ments to Minimise Motion Sickness,” RTO MP58, pp. 7.1-7.9, 2000.
J.P. Springer, S. Beck, F. Weiszig, D. Reiners, and B. Froehlich,
“Multi-Frame Rate Rendering and Display,” Proc. IEEE Virtual
Reality (VR) Conf., pp. 195-202, 2007.

C. Shaw, M. Green, J. Liang, and Y. Sun, “Decoupled
Simulation in Virtual Reality with the MR Toolkit,” Information
Systems, vol. 11, no. 3, pp. 287-317, 1993.

R. Kijima and T. Ojika, “Reflex HMD to Compensate Lag and
Correction of Derivative Deformation,” Proc. IEEE Virtual Reality
(VR) Conf., pp. 172-179, 2002.

J. Stewart, E.P. Bennett, and L. McMillan, “Pixelview: A View
Independent Graphics Rendering Architecture,” Proc. ACM
SIGGRAPH/Eurographics Workshop Graphics Hardware (HWWS),
pp. 75-84, 2004.

M. Regan and R. Pose, “Priority Rendering with a Virtual Reality
Address Recalculation Pipeline,” Proc. ACM SIGGRAPH, pp. 155-
162, 1994.

R. Pose and M. Regan, “Techniques for Reducing Virtual Reality
Latency with Architectural Support and Consideration on Human
Factors,” Proc. Int'l Conf. Hypermedia, Multimedia, and Virtual
Reality: Models, Systems, and Applications (MHVR), pp. 117-129,
1994.

J. Torborg and J.T. Kajiya, “Talisman: Commodity Realtime 3D
Graphics for the PC,” Proc. ACM SIGGRAPH, pp. 353-363, 1996.
J.W. Shade, S.J. Gortler, L.-W. He, and R. Szeliski, “Layered Depth
Images,” Proc. Ann. Conf. Computer Graphics, pp. 231-242, 1998.
L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-
Based Rendering System,” Proc. Ann. Conf. Computer Graphics,
vol. 29, pp. 39-46, 1995.

W.R. Mark, L. McMillan, and G. Bishop, “Post-Rendering 3D
Warping,” Proc. Symp. Int’l 3D Graphics, vol. 180, pp. 7-16, 1997.
F. Smit, R. van Liere, S. Beck, and B. Froehlich, “An Image-
Warping Architecture for VR: Low Latency versus Image
Quality,” Proc. IEEE Virtual Reality Conf., Mar. 2009.

W.R. Mark, “Post-Rendering 3D Image Warping: Visibility,
Reconstruction, and Performance for Depth Image Warping,”
PhD dissertation, Univ. of North Carolina at Chapel Hill, 1999.
J.E. Farrell, M. Pavel, and G. Sperling, “The Visible Persistence of
Stimuli in Stroboscopic Motion,” Vision Research, vol. 30, no. 6,
pp- 921-936, 1990.

A.J. Woods and S.S. Tan, “Characteristic Sources of Ghosting in
Time-Sequential Stereoscopic Video Displays,” Proc. SPIE, pp. 66-
77, 2002.

F. Smit, R. van Liere, and B. Froehlich, “Three Extensions to
Subtractive Crosstalk Reduction,” Proc. Eurographics Symp. Virtual
Environments (EGVE), pp. 85-92, 2007.

P. Cignoni, M. Corsini, and G. Ranzuglia, “Meshlab: An Open-
Source 3D Mesh Processing System,” ERCIM News, vol. 73, pp. 45-
46, Apr. 2008.

A. Steed, “A Simple Method for Estimating the Latency of
Interactive, Real-Time Graphics Simulations,” Proc. ACM Symp.
Virtual Reality Software and Technology (VRST), pp. 123-129, 2008.
S. Daly, “The Visible Differences Predictor: An Algorithm for the
Assessment of Image Fidelity,” Digital Images and Human Vision,
pp- 179-206, MIT Press, 1993.

Ferdi Alexander Smit received the MSc degree
in computer science from the Vrije Universiteit in
Amsterdam in 2005. He is currently working
toward the PhD degree in the Virtual Reality
Group at the Centrum Wiskunde Informatica
(CWI) in Amsterdam, The Netherlands. His PhD
supervisor is Robert van Liere. He expects to
receive his PhD degree in computer science in
October 2009, after which he plans to continue
work as a postdoctoral researcher. His research
mterests lie in virtual reality, real-time parallel computer graphics, and
computer vision and tracking.

Robert van Liere received the master’'s degree
in computer science from the University of Delft,
and the PhD degree in computer science from
the University of Amsterdam. He is a principle
investigator at CWI in Amsterdam, where he
heads the Visualization and Virtual Reality
Research Group. He also holds a part time
position as a full professor at the Technical
University in Eindhoven. His research interests
involve interactive visualization, virtual environ-
ments, and human -computer interaction.

Bernd Froehlich received the MS and PhD
degrees in computer science from the Technical
University of Braunschweig in 1988 and 1992,
respectively. He is a full professor with the
Media Faculty at Bauhaus-Universitat Weimar,
Germany. From 1997 to 2001, he held a
position as a senior scientist at the German
National Research Center for Information Tech-
nology (GMD), where he was involved in
scientific visualization research. From 1995 to
1997, he worked as a research associate with the Computer Graphics
Group at Stanford University. He served as a program cochair for the
IEEE VR, 3DUI, IPT/EGVE, and VRST conferences. He is also a
coinitiator of the 3DUI symposium series and won the 2008 Virtual
Reality Technical Achievement Award. His research interests include
real-time rendering, visualization, 2D and 3D input devices, 3D
interaction techniques, multiviewer display technology, and support
for collaboration in colocated and distributed virtual environments.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

